$0040 - 4039/85$ \$3.00 + .00 01985 Pergamon Press Ltd.

S-SILYLKETENE S.N-ACETALS. CROSS-ALDOL TYPE CONDENSATION REACTION WITH SCHIFF BASES.

Claude GOASDOUE, Marcel GAUDEMAR

Laboratoire de Synthèse Organométallique Université P. et M. Curie Bât. F, 4, Place Jussieu, F-75230 - PARIS CEDEX 05

Abstract: S-silylketene S, N-acetals react with Schiff bases to afford B-aminothioamides in good yields. The reactivity of the title acetals is compared to that of corresponding lithium-enethiolates.

We have previously reported (1) that S-silylketene S,N-acetals undergo stereo- and regio selective aldol-type reaction with benzaldehyde and a-enones.

The area of applications of the reaction of silyl enol ethers and silyl ketene acetals with electrophiles activated with Lewis acids has been well reviewed⁽²⁾ but Schiff bases have been far less studied⁽³⁾. A recent communication of Dubois⁽⁴⁾ on cross-aldol type reaction of ketene bis (trimethylsilyl) acetals with Schiff bases prompts us to report our results on the Lewis acid-mediated addition of S-silylketene S, N-acetals to several aldimines⁽⁵⁾:

$$
R^{1} \longrightarrow 5-5 \text{eV}_{\text{NMe}_{2}}^{2} + C_{6}H_{5}-CH=N-R^{2} \frac{1}{2} \frac{1}{H_{3}O^{+}} \frac{MX_{n}}{C_{6}H_{5}CH(NHR^{2})CH(R^{1})CSNMe_{2}}
$$

1 2 3 (R^{*}R^{*} + R^{*}S^{*})

 β -aminothioamides 3 are obtained in good yields (table I). The reaction of lithium enethiolates $\frac{1}{4}$ with aldimines was also investigated because

our previous study has shown striking differences of regio- and stereoselectivity between S-silylketene S, N-acetal 1 and lithium enethiolate 4.

Experimental procedures for reaction of aldimines with $\frac{1}{4}$ are varied.

When R¹ = CH₃, condensation with benzilidene aniline (R² = C₆H₅) provides B-aminothioamides 3 in good yield (65 %) but the mixture $\frac{4}{1}$ + 2 must be stirred 5 days at -70°C. With enolizable aldimines (R^2 = CH₂-C₆H₅, CH₃) no condensation product occurs whatever experimental conditions (temperature, solvent).

1016

Lithium enethiolate $\frac{4}{5}$ generated from methyl-3 butyrothioamide (R¹ = CH(CH₃)₃) does not react with Schiff bases whatever R^2 and experimental procedures.

Comparison of reactivity of 1 and 4 shows once more the superiority of S-silylketene S,N-acetals 1 over corresponding enethiolates 4 for synthetic views.

Table I : Reaction of 1 with aldimines 2

- a) Experimental procedure described in ref. 5
- b) <u>3</u> is a diastereoisomeric mixture. Diastereoisomeric ratio <u>3</u> $\alpha/3$ B is determined by "H-NMR^{\o)} and HPLC (silica gel Si-60, 25 cm, 15-25µ). <u>3</u> α is assigned in all cases to the isomer with higher $\mathtt{R_F}$ and $\underline{\mathtt{3}}$ to that with a lower $\mathtt{R_F}$ value.
- c) Lewis acid added in catalytic amount ; ZnBr₂ to <u>1</u> was = $0.05/1$.
- d) Ratio of SnCl $_4$ to $\underline{1}$ was $1/1.$
- e) The mixture forms a mixed ligand titanium compound TiCl $_{2}$ (0.iPr) $_{2}$ by disproportiona tion⁽⁷⁾. Ratio of MX_n to <u>1</u> was $1/1$.
- f) No reaction whatever experimental procedure.

References and footnotes.

1. C. Goasdoué, N. Goasdoué, M. Gaudemar, Tetrahedron Letters, 24, 4001 (1983) ; Tetrahedron Letters, 25, 537 (1984) ; J. Organomet. Chem., 263, 273 (1984).

2. For recent reviews see :

- a) T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 16, 817 (1977).
- b) E. Colvin, Silicon in Organic Synthesis, Butterworths Ed., (1980).

3. a) I. Ojima, S. Inaba, K. Yoshida, Tetrahedron Lett., 3643 (1977).

b) I. Ojima, S. Inaba, Tetrahedron Lett., 2l, 2077 (1980) ; ibid, 1, 2081 (1980).

- c) J.F. Kerwin, S. Danishefsky, Tetrahedron Lett., 23, 3739 (1982).
- 4. J.E. Dubois, G. Axiotis, Tetrahedron Lett., 25, 2143 (1984).

5. General procedure :

To a stirred solution of aldimine (0.02 mol) in dry methylene chloride (10 ml) (under a N₂ atmosphere), cooled at -40° C, is added MXn (1 equivalent or in the ratio noted in table I). The mixture is then stirred for 15 mm at 0° C and then cooled at -40° C. A methylene chloride (10 ml) solution of 1 (0.02 mol)⁽¹⁾ is added dropwise to the solution and stirred for the time indicated in the table. After quenching with water at -80°C, desilylation is achieved with IM HCl and then the aqueous phase neutralized with ${\rm Na}_2^{\rm CO}{}_{3}$ or NaOH solution. After filtration of inorganic salts, $\frac{3}{2}$ is extracted with CH₂C1₂. The organic extracts are combined, dried over $MgSO_{\Lambda}$ and concentrated in vacuo. The purification of the oil is achieved by HPLC.

6. $C_6H_5^3CH(NHC_6H_5)^2CH(CH_3)^2CNMe_2$

HPLC : ether/petroleum ether (50/50)

 $\frac{3\alpha}{2}$ mp = 163°C 38 oil

- $\frac{3}{2}$ a RMN 4 H (250 MHz, CDC1₃, Sppm, ref. TMS) : 7.5 to 6.45 (10H) ; 4.60 (1H, d, 3 J = 5.3 Hz); 3.64 (IH, m) ; 3.30 and 2.62 (6H, s, a) ; 1.46 (3H, d). RMN 13 C (20.13 MHz, CDC1₃, δ ppm, ref. TMS) : 206.1 (C₁) ; 148.0 to 114.0 (aromatic ring C) ; 61.7 (C_3) ; 48.5 (C_2) ; 44.8 and 41.1 $(N(CH_3)_2)$; 170 (C_4) .
- 36 RMN ⁺H : 7.5 to 6.45 (10H) ; 4.53 (1H, d, ³J = 5.6 Hz) ; 3.45 (1H, m) ; 3.36 and 3.22 $(6H, s, s)$; 1.34 $(3H, d)$. RMN 13 C : 204.4 (C₁) ; 142.4 to 113.4 (aromatic ring C) ; 62.7 (C₃) ; 47.0 (C₂) ; 44.8
	- and 41.1 (N(CH₃)₂); 20.6 (C₄).

 $C_{\beta}H_{5}^{\beta}$ CH(NHCH₂C_AH₅)²CH(CH₃)²CSNMe₂ HPLC : CH_2Cl_2 , CH_3COOEt (70/30)

 3α mp = 78°C 38 oil

 3^{α} RMN ⁻H : 7.5 to 7.1 (10H) ; 4.03 (IH, d, ⁻J = 6.9 Hz) ; 3.63 and 3.48 (2H, d, d (AB), 2 J = 13.2 Hz) ; 3.35 (1H, m) ; 3.25 and 2.96 (6H, s, s) 1.39 (3H, d).

RMN 13 C : 207.1 (C₁) ; 142.1 to 126.8 (aromatic ring C) ; 66.6 (C₃) ; 51.7 (C₅) ; 49.1 (C_2) ; 44.5 and 41.1 $(N(CH_3)_2)$; 17.2 (C_4) .

 $\underline{3}$ B RMN ¹H : 7.5 to 7.0 (10H) ; 4.15 (1H, d, $J = 9.2$ Hz) ; 3.50 and 3.36 (6H, s, s) ; 3.43 $(2H, s)$; 3.25 (1H, m); 0.89 (3H, d). RMN 13 C : 207.2 (C₁) ; 141.1 to 126.7 (aromatic ring C) ; 68.8 (C₃) ; 51.7 (C₅) ; 49.8 (C_2) ; 44.9 and 41.4 $(N(CH_2)_2)$; 18.8 (C_4) .

 $C_{6}H_{5}$ CH(NHC₂H₅)²H(CH(CH₂)₂)CSNMe₂

HPLC : CH_2Cl_2 , petroleum ether (80/20)

 3α mp = 178°C 3β mp = 205°C

- $\frac{3\alpha}{\alpha}$ RMN ¹H : 7.5 to 6.4 (10H) ; 4.75 (1H, d, ³J = 4.3 Hz) ; 3.08 (1H, d x d) ; 3.22 and 2.52 $(6H, s, s)$; 2.77 (1H, m); 1.12 and 0.86 (6H, d, d). RMN 13 C : 203.7 (C₁) ; 146.8 to 112.8 (aromatic ring C) ; 60.1 (C₂) ; 57.5 (C₃) ; 44.5 and 41.3 $(N(CH_2)_2)$; 32.2 (C_4) ; 21.7 and 20.1 $(C_5 \times 2)$.
- 3β RMN ¹H : 7.5 to 6.4 (10H) ; 4.87 (1H, d, ³J = 7.9 Hz) ; 3.41 (1H, d x d) ; 3.24 and 3.11 (6H, s, s) ; 2.55 (lH, m) ; 1.12 and 1.01 (6H, d, d). RMN 13 C : 204.1 (C₁) ; 147.2 to 114.2 (aromatic ring C) ; 6.16 (C₃) ; 59.2 (C₂) ; 44.5 and 41.7 $(N(CH_3)_2)$; 31.5 (C_4) ; 20.9 and 20.1 $(C_5 \times 2)$.
- 7. C. Dijkgraaf, J.P.G. Rousseau, Spectrochim. Acta, A, 24, 1213 (1968).

(Received in France 19 October 1984)