0040-4039/85 \$3.00 + .00 ©1985 Pergamon Press Ltd.

S-SILYLKETENE S,N-ACETALS. CROSS-ALDOL TYPE CONDENSATION REACTION WITH SCHIFF BASES.

Claude GOASDOUE, Marcel GAUDEMAR

Laboratoire de Synthèse Organométallique Université P. et M. Curie Bât. F, 4, Place Jussieu, F-75230 - PARIS CEDEX 05

Abstract : S-silylketene S,N-acetals react with Schiff bases to afford β-aminothioamides in good yields. The reactivity of the title acetals is compared to that of corresponding lithium-enethiolates.

We have previously reported⁽¹⁾ that S-silylketene S,N-acetals undergo stereo- and regio selective aldol-type reaction with benzaldehyde and α -enones.

The area of applications of the reaction of silyl enol ethers and silyl ketene acetals with electrophiles activated with Lewis acids has been well reviewed⁽²⁾ but Schiff bases have been far less studied⁽³⁾. A recent communication of Dubois⁽⁴⁾ on cross-aldol type reaction of ketene bis (trimethylsilyl) acetals with Schiff bases prompts us to report our results on the Lewis acid-mediated addition of S-silylketene S,N-acetals to several aldimines⁽⁵⁾:

$$\overset{R^{1}}{\underset{H}{\longrightarrow}} \underbrace{\overset{S-SiMe_{3}}{\underset{NMe_{2}}{\longrightarrow}} + C_{6}H_{5}-CH=N-R^{2}}_{1} \underbrace{\overset{1}{\underset{D}{\longrightarrow}} Mxn}_{2)H_{3}O^{+}} C_{6}H_{5}CH(NHR^{2})CH(R^{1})CSNMe_{2}}_{3}$$

 β -aminothioamides <u>3</u> are obtained in good yields (table I).

The reaction of lithium enethiolates 4 with aldimines was also investigated because

our previous study has shown striking differences of regio- and stereoselectivity between S-silylketene S,N-acetal <u>1</u> and lithium enethiolate 4.

Experimental procedures for reaction of aldimines with 4 are varied.

When $R^1 = CH_3$, condensation with benzilidene aniline $(R^2 = C_6H_5)$ provides β -aminothioamides 3 in good yield (65 %) but the mixture 4 + 2 must be stirred 5 days at -70°C. With enolizable aldimines $(R^2 = CH_2-C_6H_5, CH_3)$ no condensation product occurs whatever experimental conditions (temperature, solvent). 1016

Lithium enethiolate 4 generated from methyl-3 butyrothioamide $(R^1 = CH(CH_3)_2)$ does not react with Schiff bases whatever R^2 and experimental procedures.

Comparison of reactivity of $\underline{1}$ and $\underline{4}$ shows once more the superiority of S-silylketene S,N-acetals $\underline{1}$ over corresponding enethiolates $\underline{4}$ for synthetic views.

Table I : Reaction of 1 with ald imines 2

R^1	R ²	MX ^{a)} n	Reactions Temp.(°C)	conditions Time (hr)	Yield <u>3</u> (%)	(3a/3ß) ^{b)}
СНз	^с 6 ^н 5	ZnBr ₂ c)	-25	12	71	(45/55)
5	0 5	ZnBr ^{c)} SnCl ₄	6 0	0.15	74	(50/50)
		-	(+20	2	75	(53/47)
CH3	^{CH} 2 ^{-C} 6 ^H 5	ZnBr ^c) SnCl ² d)	20	12	45	(30/70)
5	2 0 5	$\operatorname{SnCl}_{4}^{2d}$	20	1	45	(40/60)
		TiCl ₄ +Ti(0.iPr) ₄ ^{e)}	-20	12	70	(40/60)
(CH ₃) ₂ CH	с ₆ н ₅	ZnBr ₂ c)			f)	
		$SnCl_4^{d}$			f)	
		TiCl ₄ +Ti(0.iPr) ₄ ^{e)}	20	12	70	(20/80)

- a) Experimental procedure described in ref. 5
- b) $\frac{3}{l}$ is a diastereoisomeric mixture. Diastereoisomeric ratio $\frac{3\alpha/3\beta}{\beta}$ is determined by $\frac{1}{l}_{H-NMR}^{(6)}$ and HPLC (silica gel Si-60, 25 cm, 15-25µ). $\frac{3\alpha}{3}$ is assigned in all cases to the isomer with higher $R_{\rm F}$ and $\frac{3\beta}{2}$ to that with a lower $R_{\rm F}$ value.
- c) Lewis acid added in catalytic amount ; ZnBr_2 to $\underline{1}$ was = 0.05/1.
- d) Ratio of $SnCl_4$ to <u>1</u> was 1/1.
- e) The mixture forms a mixed ligand titanium compound $\text{TiCl}_2(0.iPr)_2$ by disproportionation⁽⁷⁾. Ratio of MX_n to <u>1</u> was 1/1.
- f) No reaction whatever experimental procedure.

References and footnotes.

 C. Goasdoué, N. Goasdoué, M. Gaudemar, Tetrahedron Letters, <u>24</u>, 4001 (1983); Tetrahedron Letters, 25, 537 (1984); J. Organomet. Chem., <u>263</u>, 273 (1984).

2. For recent reviews see :

- a) T. Mukaiyama, Angew. Chem., Int. Ed. Engl., <u>16</u>, 817 (1977).
- b) E. Colvin, Silicon in Organic Synthesis, Butterworths Ed., (1980).

3. a) I. Ojima, S. Inaba, K. Yoshida, Tetrahedron Lett., 3643 (1977).

b) I. Ojima, S. Inaba, Tetrahedron Lett., <u>21</u>, 2077 (1980) ; ibid, <u>21</u>, 2081 (1980).

- c) J.F. Kerwin, S. Danishefsky, Tetrahedron Lett., 23, 3739 (1982).
- 4. J.E. Dubois, G. Axiotis, Tetrahedron Lett., 25, 2143 (1984).

5. General procedure :

To a stirred solution of aldimine (0.02 mol) in dry methylene chloride (10 ml) (under a N_2 atmosphere), cooled at -40°C, is added MXn (1 equivalent or in the ratio noted in table I). The mixture is then stirred for 15 mn at 0°C and then cooled at -40°C. A methylene chloride (10 ml) solution of $\underline{1}$ (0.02 mol)⁽¹⁾ is added dropwise to the solution and stirred for the time indicated in the table. After quenching with water at -80°C, desilylation is achieved with 1M HCl and then the aqueous phase neutralized with Na_2CO_3 or NaOH solution. After filtration of inorganic salts, $\underline{3}$ is extracted with CH_2Cl_2 . The organic extracts are combined, dried over MgSO₄ and concentrated in vacuo. The purification of the oil is achieved by HPLC.

6.
$$C_6H_5$$
³CH(NHC₆H₅)²CH(CH₃)¹CSNMe₂

HPLC : ether/petroleum ether (50/50)

 $\underline{3}\alpha$ mp = 163°C $\underline{3}\beta$ oil

<u>3</u>α RMN ¹H (250 MHz, CDCl₃, δppm, ref. TMS) : 7.5 to 6.45 (10H) ; 4.60 (1H, d, ³J = 5.3 Hz); 3.64 (1H, m) ; 3.30 and 2.62 (6H, s, s) ; 1.46 (3H, d). RMN ¹³C (20.13 MHz, CDCl₃, δppm, ref. TMS) : 206.1 (C₁) ; 148.0 to 114.0 (aromatic ring

C); 61.7 (C₃); 48.5 (C₂); 44.8 and 41.1 (N(CH₃)₂); 170 (C₄).

- <u>3</u> β RMN ¹H : 7.5 to 6.45 (10H) ; 4.53 (1H, d, ³J = 5.6 Hz) ; 3.45 (1H, m) ; 3.36 and 3.22 (6H, s, s) ; 1.34 (3H, d).
 - RMN 13 C : 204.4 (C₁) ; 142.4 to 113.4 (aromatic ring C) ; 62.7 (C₃) ; 47.0 (C₂) ; 44.8 and 41.1 (N(CH₃)₂) ; 20.6 (C₄).

$$C_{6}H_{5}^{3}CH(NHCH_{2}C_{6}H_{5})^{2}CH(CH_{3})^{1}CSNMe_{2}$$

HPLC : CH₂Cl₂, CH₃COOEt (70/30)

 $\underline{3}\alpha$ mp = 78°C $\underline{3}\beta$ oil

 $\underline{3}\alpha$ RMN ¹H : 7.5 to 7.1 (10H) ; 4.03 (1H, d, ³J = 6.9 Hz) ; 3.63 and 3.48 (2H, d, d (AB), ²J = 13.2 Hz) ; 3.35 (1H, m) ; 3.25 and 2.96 (6H, s, s) 1.39 (3H, d).

RMN 13 C : 207.1 (C₁) ; 142.1 to 126.8 (aromatic ring C) ; 66.6 (C₃) ; 51.7 (C₅) ; 49.1 (C₂) ; 44.5 and 41.1 (N(CH₃)₂) ; 17.2 (C₄).

<u>3</u> β RMN ¹H : 7.5 to 7.0 (10H) ; 4.15 (1H, d, ³J = 9.2 Hz) ; 3.50 and 3.36 (6H, s, s) ; 3.43 (2H, s) ; 3.25 (1H, m) ; 0.89 (3H, d). RMN ¹³C : 207.2 (C₁) ; 141.1 to 126.7 (aromatic ring C) ; 68.8 (C₃) ; 51.7 (C₅) ; 49.8 (C₂) ; 44.9 and 41.4 (N(CH₃)₂) ; 18.8 (C₄).

 C_6H_5 ³ $C_H(NHC_6H_5)$ ² $C_H(C_H(C_{H_3})_2)$ ¹ C_SNMe_2

HPLC : CH₂Cl₂, petroleum ether (80/20)

 $3\alpha \text{ mp} = 178^{\circ}\text{C}$ $3\beta \text{ mp} = 205^{\circ}\text{C}$

- <u>3</u> α RMN ¹H : 7.5 to 6.4 (10H) ; 4.75 (1H, d, ³J = 4.3 Hz) ; 3.08 (1H, d x d) ; 3.22 and 2.52 (6H, s, s) ; 2.77 (1H, m) ; 1.12 and 0.86 (6H, d, d). RMN ¹³C : 203.7 (C₁) ; 146.8 to 112.8 (aromatic ring C) ; 60.1 (C₂) ; 57.5 (C₃) ; 44.5 and 41.3 (N(CH₂)₂) ; 32.2 (C₄) ; 21.7 and 20.1 (C₅ x 2).
- <u>3</u> β RMN ¹H : 7.5 to 6.4 (10H) ; 4.87 (1H, d, ³J = 7.9 Hz) ; 3.41 (1H, d x d) ; 3.24 and 3.11 (6H, s, s) ; 2.55 (1H, m) ; 1.12 and 1.01 (6H, d, d). RMN ¹³C : 204.1 (C₁) ; 147.2 to 114.2 (aromatic ring C) ; 6.16 (C₃) ; 59.2 (C₂) ; 44.5 and 41.7 (N(CH₃)₂) ; 31.5 (C₄) ; 20.9 and 20.1 (C₅ x 2).
- 7. C. Dijkgraaf, J.P.G. Rousseau, Spectrochim. Acta, A, 24, 1213 (1968).

(Received in France 19 October 1984)